Ubiquitin–proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation
نویسندگان
چکیده
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.
منابع مشابه
A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes.
Mammalian oocyte maturation depends on the translational activation of stored maternal mRNAs upon meiotic resumption. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) is a key oocyte factor that regulates maternal mRNA translation. However, the signal that triggers CPEB1 activation at the onset of mammalian oocyte maturation is not known. We provide evidence that a mitogen-activate...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملTime Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملMouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for ooc...
متن کاملThe Role of RING Box Protein 1 in Mouse Oocyte Meiotic Maturation
RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 121 شماره
صفحات -
تاریخ انتشار 2004